If the system of equations
$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $
$ x+(\cos \alpha) y+(\sin \alpha) z=0 $
$ x+(\sin \alpha) y-(\cos \alpha) z=0$
has a non-trivial solution, then $\alpha \in\left(0, \frac{\pi}{2}\right)$ is equal to :
$\frac{3 \pi}{4}$
$\frac{7 \pi}{24}$
$\frac{5 \pi}{24}$
$\frac{11 \pi}{24}$
Let $P $ and $Q $ be $3×3$ matrices $P \ne Q$. If ${P^3} = {Q^3},{P^2}Q = {Q^2}P$ then determinant of $\det \left( {{P^2} + {Q^2}} \right)$ is equal to :
The number of solution of the following equations ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ is
The system of linear equations $3 x-2 y-k z=10$; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ is inconsistent if
Solution of the equation $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ are
The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x - y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on