If the system of equations $\alpha x+y+z=5, x+2 y+$ $3 z=4, x+3 y+5 z=\beta$ has infinitely many solutions, then the ordered pair $(\alpha, \beta)$ is equal to:

  • [JEE MAIN 2022]
  • A

    $(1,-3)$

  • B

    $(-1,3)$

  • C

    $(1,3)$

  • D

    $(-1,-3)$

Similar Questions

For non zero, $a,b,c$ if $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = $

Evaluate the determinants

$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

The system of equations : $2x\, \cos^2\theta + y\, \sin2\theta - 2\sin\theta = 0$ $x\, \sin2\theta + 2y\, \sin^2\theta = - 2\, \cos\theta$ $x\, \sin\theta - y \cos\theta = 0$ , for all values of $\theta$ , can

If the system of equation $3x - 2y + z = 0$, $\lambda x - 14y + 15z = 0$, $x + 2y + 3z = 0$ have a non-trivial solution, then $\lambda = $

If the following system of linear equations

$2 x+y+z=5$

$x-y+z=3$

$x+y+a z=b$

has no solution, then :

  • [JEE MAIN 2021]