If the system of equations, $x + 2y -3z = 1, (k + 3) z = 3, (2k + 1)x + z = 0$ is inconsistent, then the value of $k$ is :-
$-3$
$1/2$
$0$
$2$
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
If $|A|$ denotes the value of the determinant of the square matrix $A$ of order $3$ , then $ |-2A|=$
If $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ then the determinant $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ is equal to :
If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
{{q_1}}&{{q_2}}&{{q_3}} \\
{{q_2}}&{{q_3}}&{{q_1}} \\
{{q_3}}&{{q_1}}&{{q_2}}
\end{array}} \right|$ is
Consider system of equations $ x + y -az = 1$ ; $2x + ay + z = 1$ ; $ax + y -z = 2$