If $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ then the determinant $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ is equal to :

  • [JEE MAIN 2021]
  • A

    $a_{2} a_{6}-a_{4} a_{8}$

  • B

    $\mathrm{a}_{9}$

  • C

    $a_{1} a_{9}-a_{3} a_{7}$

  • D

    $\mathrm{a}_{5}$

Similar Questions

Let $\theta \in\left(0, \frac{\pi}{2}\right)$. If the system of linear equations

$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$

has a non-trivial solution, then the value of $\theta$ is :

  • [JEE MAIN 2021]

Let $P $ and $Q $ be $3×3$ matrices $P \ne Q$. If ${P^3} = {Q^3},{P^2}Q = {Q^2}P$ then determinant of $\det \left( {{P^2} + {Q^2}} \right)$ is equal to :

  • [AIEEE 2012]

The value of $'a'$ for which the system of equation  $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$  has a non-zero solution is :-

If the system of linear equations  $x-2 y+z=-4 $   ;  $2 x+\alpha y+3 z=5 $  ;  $3 x-y+\beta z=3$ has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to

  • [JEE MAIN 2024]

If $\alpha \neq \mathrm{a}, \beta \neq \mathrm{b}, \gamma \neq \mathrm{c}$ and $\left|\begin{array}{lll}\alpha & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & \beta & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \gamma\end{array}\right|=0$,then $\frac{a}{\alpha-a}+\frac{b}{\beta-b}+\frac{\gamma}{\gamma-c}$ is equal to :

  • [JEE MAIN 2024]