જો સમીકરણની સંહતિ $3x - 2y + z = 0$, $\lambda x - 14y + 15z = 0$, $x + 2y + 3z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $\lambda $ ની કિમત મેળવો.
$5$
$-5$
$-29$
$29$
જો $x, y, z > 0$ અનુક્રમે સમગુણોતર શ્રેણીના $2^{nd}, 3^{rd}, 4^{th}$ પદ હોય અને $\Delta = \left| {\begin{array}{*{20}{c}}
{{X^k}}&{{X^{k + 1}}}&{{X^{k + 2}}}\\
{{Y^k}}&{{Y^{k + 1}}}&{{Y^{k + 2}}}\\
{{Z^k}}&{{Z^{k + 1}}}&{{Z^{k + 2}}}
\end{array}} \right| = {\left( {r - 1} \right)^2}\left( {1 - \frac{1}{{{r^2}}}} \right)$ મેળવો. ( કે જ્યાં $r$ એ સામાન્ય ગુણોતર છે . ) $k=$ .......
જો $\left| {\begin{array}{*{20}{c}}
{^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\
{^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\
{^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}}
\end{array}} \right| = 0$ હોય તો $r$ મેળવો.
ધારોકે $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$. જો કોઈ $x, y, z \in \mathbb{R} x y z \neq 0$
માટે $x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$ હોય, તો $6 \alpha+4 \beta+\gamma=$..............
જો સુરેખ સમીકરણો $kx + y + z =1$ $x + ky + z = k$ અને $x + y + zk = k ^{2}$ એ એકપણ ઉકેલ નો ધરાવે તો $k$ ની કિમંત મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$ તો $x =$