જો $(x - 2y + 3 z)^n,$ $n \in N$ ના વિસ્તરણમાં બધા સહગુણકોનો સરવાળો $128$ હોય તો $(1 + x)^n$ ના વિસ્તરણમાં મહત્તમ સહગુણક મેળવો
$35$
$20$
$10$
$15$
જો ${(1 + x)^n}$ ના વિસ્તરણમાં $2^{nd}$, $3^{rd}$ અને $4^{th}$ પદના સહગુણક સમાંતર શ્રેણી માં હોય તો ${n^2} - 9n$ = . . . .
જો $\left(x^{\frac{2}{3}}+\frac{\alpha}{x^3}\right)^{22}$ ના વિસ્તરણમાં $x$ વગર નું પદ $7315 $ હોય, તો $|\alpha|=...............$
સાબિત કરો કે $(1+x)^{2 n}$ ના વિસ્તરણનું મધ્યમ પદ $\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n}$ છે, જ્યાં $n$ ધન પૂર્ણાક છે.
${\left( {x - \frac{1}{x}} \right)^{18}}$ ના વિસ્તરણમાં મધ્યમપદ મેળવો.
જો $n$ એ ધન પૂર્ણાંક હોય , તો ${(1 + x)^n}$ ના વિસ્તરણમાં મહતમ પદને મહતમ સહગુણક હોય તો . . . .