If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is
$2n\pi \pm {( - 1)^n}\frac{\pi }{6}$
$\frac{{n\pi }}{2} \pm {( - 1)^n}\frac{\pi }{6}$
$n\pi \pm \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{6}$
Let $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ , then number of solution $(s)$ of equation $f(x) = 2$ in $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ is
The angles $\alpha, \beta, \gamma$ of a triangle satisfy the equations $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ and $3 \sin \beta+2 \cos \alpha=1$. Then, angle $\gamma$ equals
If $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, then the general value of $\theta $ is
For $x \in(0, \pi)$, the equation $\sin x+2 \sin 2 x-\sin 3 x=3$ has
If $\cos \theta = \frac{{ - 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are