If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {e^x},\,x \in R\} $; $B = \{ (x,\,y):y = x,\,x \in R\} ,$ then

  • A

    $B \subseteq A$

  • B

    $A \subseteq B$

  • C

    $A \cap B = \phi $

  • D

    $A \cup B = A$

Similar Questions

If $A, B$ and $C$ are non-empty sets, then $(A -B)  \cup (B -A)$ equals 

If $A =$ [$x:x$ is a multiple of $3$] and $B =$ [$x:x$ is a multiple of $5$], then $A -B$ is ($\bar A$ means complement of $A$)

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap B$

Show that $A \cap B=A \cap C$ need not imply $B = C$

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then