If $X$ and $Y$ are two sets such that $X \cup Y$ has $18$ elements, $X$ has $8$ elements and $Y$ has $15$ elements ; how many elements does $X \cap Y$ have?
It is given that:
$n(X \cup Y)=18, n(X)=8, n(Y)=15$
$n(X \cap Y)=?$
We know that:
$n(X \cup Y)=n(X)+n(Y)-n(X \cap Y)$
$\therefore 18=8+15-n(X \cap Y)$
$\Rightarrow n(X \cap Y)=23-18=5$
$\therefore n(X \cap Y)=5$
The shaded region in given figure is-
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$B-C$
If $A$ and $B$ are not disjoint sets, then $n(A \cup B)$ is equal to
If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find
$X \cap Y$
Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X ,$ show that $A = B$
( Hints $A = A \cap (A \cup X),B = B \cap (B \cup X)$ and use Distributive law )