If $X$ and $Y$ are two sets such that $X \cup Y$ has $18$ elements, $X$ has $8$ elements and $Y$ has $15$ elements ; how many elements does $X \cap Y$ have?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that:

$n(X \cup Y)=18, n(X)=8, n(Y)=15$

$n(X \cap Y)=?$

We know that:

$n(X \cup Y)=n(X)+n(Y)-n(X \cap Y)$

$\therefore 18=8+15-n(X \cap Y)$

$\Rightarrow n(X \cap Y)=23-18=5$

$\therefore n(X \cap Y)=5$

Similar Questions

The shaded region in given figure is-

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$B-C$

If $A$ and $B$ are not disjoint sets, then $n(A \cup B)$ is equal to

If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find

$X \cap Y$

Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X ,$ show that $A = B$

( Hints $A = A \cap (A \cup X),B = B \cap (B \cup X)$ and use Distributive law )