If $A = \{2, 3, 4, 8, 10\}, B = \{3, 4, 5, 10, 12\}, C = \{4, 5, 6, 12, 14\}$ then $(A \cap B) \cup (A \cap C)$ is equal to
$\{3, 4, 10\}$
$\{2, 8, 10\}$
$\{4, 5, 6\}$
$\{3, 5, 14\}$
If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $
Let $A=\{a, b\}, B=\{a, b, c\} .$ Is $A \subset B \,?$ What is $A \cup B \,?$
Let $A :\{1,2,3,4,5,6,7\}$. Define $B =\{ T \subseteq A$ : either $1 \notin T$ or $2 \in T \}$ and $C = \{ T \subseteq A : T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is $\dots\dots$
Let $A=\{1,2,3,4,5,6,7,8,9,10\}$ and $B=\{2,3,5,7\} .$ Find $A \cap B$ and hence show that $A \cap B = B$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap B$