If the set $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in C , \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to

  • [JEE MAIN 2023]
  • A

    $36$

  • B

    $42$

  • C

    $27$

  • D

    $30$

Similar Questions

For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if

Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .

  • [IIT 2022]

If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $

Consider the following two statements :

Statement $I$ : For any two non-zero complex numbers $\mathrm{z}_1, \mathrm{z}_2$

$\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ and

Statement $II$ : If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three distinct complex numbers and a, b, c are three positive real numbers such that $\frac{a}{|y-z|}=\frac{b}{|z-x|}=\frac{c}{|x-y|}$, then

$\frac{\mathrm{a}^2}{\mathrm{y}-\mathrm{z}}+\frac{\mathrm{b}^2}{\mathrm{z}-\mathrm{x}}+\frac{\mathrm{c}^2}{\mathrm{x}-\mathrm{y}}=1$

Between the above two statements,

  • [JEE MAIN 2024]

If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$