Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .

  • [IIT 2022]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $5$

Similar Questions

The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is

The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is

$arg\left( {\frac{{3 + i}}{{2 - i}} + \frac{{3 - i}}{{2 + i}}} \right)$ is equal to

If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is

If$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$then $arg(z) = $ ............. $^\circ$