If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$

  • A

    $2\sqrt 3 - 2i$

  • B

    $2\sqrt 3 + 2i$

  • C

    $ - 2\sqrt 3 + 2i$

  • D

    $ - \sqrt 3 + i$

Similar Questions

Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$

The number of solutions of the equation ${z^2} + \bar z = 0$ is

The amplitude of $\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3 + i}}$ is

For $a \in C$, let $A =\{z \in C: \operatorname{Re}( a +\overline{ z }) > \operatorname{Im}(\bar{a}+z)\}$ and $B=\{z \in C: \operatorname{Re}(a+\bar{z}) < \operatorname{Im}(\bar{a}+z)\}$. Then among the two statements :

$(S 1)$ : If $\operatorname{Re}(A), \operatorname{Im}(A) > 0$, then the set $A$ contains all the real numbers

$(S2)$: If $\operatorname{Re}(A), \operatorname{Im}(A) < 0$, then the set $B$ contains all the real numbers,

  • [JEE MAIN 2023]

If $z_1, z_2, z_3$ $\in$  $C$ such that $|z_1| = |z_2| = |z_3| = 2$, then greatest value of expression $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ is