જો દ્રીઘાત સમીકરણ ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ ને $2$ પૂર્ણાક બીજો હોય તો $\theta $ ની શક્ય એવી $(0, 2\pi )$ માં બધી કિમતોનો સરવાળો $k\pi $, થાય તો $k$ ની કિમત મેળવો
$2$
$3$
$4$
$5$
જો $\alpha, \beta$ એ સમીકરણ $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ ના બીજ છે અને દરેક ધન પૃણાંક $n$ માટે $P_{n}=\alpha^{n}-\beta^{n}$ હોય તો $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ ની કિમંત મેળવો.
જો $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ અને $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, હોય તો $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ .......... માટે શકય છે
જો $x = \sqrt {7 + 4\sqrt 3 } $, હોય તો $, x + \frac{1}{x} = ......$
જો $x$ અને $y$ વાસ્તવિક હોય, તો નીચેનામાંથી કયું સાચું હોય ?
જો $\alpha $ અને $\beta $ દ્રીઘાત સમીકરણ $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ ના ઉકેલો હોય તો $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ ની કિમત મેળવો.