If the quadratic equation ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ has $2$ integral roots, then sum of all possible values of $\theta $ in interval $(0, 2\pi )$ is $k\pi $, then $k$ equals 

  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $5$

Similar Questions

The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is

In the real number system, the equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has

  • [KVPY 2012]

Let $A=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 / \pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\}$ and $B=\{x \geq 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}$. Then $n(A \cup B)$ is equal to:

  • [JEE MAIN 2025]

If two roots of the equation ${x^3} - 3x + 2 = 0$ are same, then the roots will be

If the sum of the two roots of the equation $4{x^3} + 16{x^2} - 9x - 36 = 0$ is zero, then the roots are