Number of natural solutions of the equation $x_1 + x_2 = 100$ , such that $x_1$ and $x_2$ are not multiple of $5$
If the expression $\left( {mx - 1 + \frac{1}{x}} \right)$ is always non-negative, then the minimum value of m must be
The number of cubic polynomials $P(x)$ satisfying $P(1)=2, P(2)=4, P(3)=6, P(4)=8$ is
Let $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$ be the solution of the equation $4 x^4+8 x^3-17 x^2-12 x+9=0$ and $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. Then the value of $\mathrm{m}$ is..........
The number of real roots of the equation $\mathrm{e}^{4 \mathrm{x}}-\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}+1=0$ is equal to $.....$