The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is

  • A

    $-9$

  • B

    $6$

  • C

    $9$

  • D

    $36$

Similar Questions

The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are

Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_1\right)\left(x-a_2\right)$ $+\left(x-a_2\right)\left(x-a_3\right)+\left(x-a_3\right)\left(x-a_1\right)$ with $a_1, a_2, a_3 \in R$.Then, $f(x) \geq 0$ if and only if

  • [KVPY 2012]

If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -

Let $f(x)=a x^2+b x+c$, where $a, b, c$ are integers, Suppose $f(1)=0,40 < f(6) < 50,60 < f(7) < 70$ and $1000 t < f(50) < 1000(t+1)$ for some integer $t$. Then, the value of $t$ is

  • [KVPY 2011]

A real root of the equation ${\log _4}\{ {\log _2}(\sqrt {x + 8} - \sqrt x )\} = 0$ is