If two roots of the equation ${x^3} - 3x + 2 = 0$ are same, then the roots will be
$2, 2, 3$
$1, 1, -2$
$-2, 3, 3$
$-2, -2, 1$
Let $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $, then all real values of $x$ for which $y$ takes real values, are
Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1} + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is
The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is
The number of real solutions of the equation $|{x^2} + 4x + 3| + 2x + 5 = 0 $are
Let $a$ ,$b$, $c$ , $d$ , $e$ be five numbers satisfying the system of equations
$2a + b + c + d + e = 6$
$a + 2b + c + d + e = 12$
$a + b + 2c + d + e = 24$
$a + b + c + 2d + e = 48$
$a + b + c + d + 2e = 96$ ,
then $|c|$ is equal to