Consider a triangle $\mathrm{ABC}$ having the vertices $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$ and angles $\angle \mathrm{ABC}=\frac{\pi}{6}$ and $\angle \mathrm{BAC}=\frac{2 \pi}{3}$. If the points $\mathrm{B}$ and $\mathrm{C}$ lie on the line $\mathrm{y}=\mathrm{x}+4$, then $\alpha^2+\gamma^2$ is equal to....................

  • [JEE MAIN 2024]
  • A

    $46$

  • B

    $13$

  • C

    $15$

  • D

    $14$

Similar Questions

Area of the parallelogram whose sides are $x\cos \alpha + y\sin \alpha = p$ $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ and $x\cos \beta + y\sin \beta = s$ is

Let $\alpha, \beta, \gamma, \delta \in \mathrm{Z}$ and let $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$ and $D(1,2)$ be the vertices of a parallelogram $\mathrm{ABCD}$. If $\mathrm{AB}=\sqrt{10}$ and the points $\mathrm{A}$ and $\mathrm{C}$ lie on the line $3 y=2 x+1$, then $2(\alpha+\beta+\gamma+\delta)$ is equal to

  • [JEE MAIN 2024]

Two vertices of a triangle are $(5, - 1)$ and $( - 2,3)$. If orthocentre is the origin then coordinates of the third vertex are

  • [IIT 1979]

The line $\frac{x}{a} + \frac{y}{b}=1$ moves in such a way that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{2c^2},$ where $a, b, c \in R_0$ and $c$ is constant, then locus of the foot of the perpendicular from the origin on the given line is -

A variable straight line passes through a fixed point $(a, b)$ intersecting the co-ordinates axes at $A\,\, \&\,\, B$. If $'O'$ is the origin then the locus of the centroid of the triangle $OAB$ is :