જો એક સમાંતર શ્રેણીનું પ્રથમ પદ $3$ અને તેના પ્રથમ $25$ પદોનો સરવાળો તે પછીના બીજા $15$ પદોનો સરવાળા જેટલો થાય તો સમાંતર શ્રેણીનો સામાન્ય તફાવત મેળવો
$\frac{1}{4}$
$\frac{1}{5}$
$\frac{1}{7}$
$\frac{1}{6}$
સમાંતર શ્રેણીનું $r$ મું પદ $Tr$ છે. તેનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ છે. જો કેટલાક ધન પૂર્ણાકો $m, n, m \neq n,$ માટે $T_m = 1/n$ અને $T_n = 1/m,$ હોય તો $a - d = …….$
જો $a, b, c,d$, તે સમગુણોત્તર શ્રેણીમાં હોય, અને જો $a$ અને $b$ $x^{2}-3 x+p=0$ ના બીજ હોય અને $c, d$ $x^{2}-12 x+q=0$ ના બીજ હોય તો સાબિત કરો કે $(q+p):(q-p)=17: 15$
ધારો કે $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ પૂર્ણકોનો ગણ છે જ્યાં $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. ધરો કે ગણ $A + A =\{ x + y : x , y \in A \} \quad$ બરાબર $39$ ઘટકો સમાવે છે તો $a_{1}+a_{2}+\ldots \ldots+a_{18}$ નું મૂલ્ય.................. છે
ધારો કે $S_n$ એ, સમાંતર શ્રેણી $3,7,11, \ldots . . .$. નાં $n$ પદોનો સરવાળો છે. જો $40<\left(\frac{6}{n(n+1)} \sum_{k=1}^n S_k\right)<42$ હોય,તો $n=$___________.
શ્રેણીઓ $4,9,14,19, \ldots . . .25$ માં પદ સુધી તથા $3,6,9,12, \ldots . . .37$ માં પદ સુધીના સામાન્ય પદોની સંખ્યા . . . . . .. છે.