यदि किसी गुणोत्तर श्रेणी का प्रथम तथा $n$ वाँ पद क्रमशः $a$ तथा $b$ हैं, एवं $P , n$ पदों का गुणनफल हो, तो सिद्ध कीजिए कि $P ^{2}=(a b)^{n}$
The first term of the $G.P.$ is $a$ and the last term is $b$
Therefore, the $G.P.$ is $a, a r, a r^{2}, a r^{3} \ldots a r^{n-1},$ where $r$ is the common ratio.
$b=a r^{n-1}$ .........$(1)$
$P=$ Product of $n$ terms
$=(a)(a r)\left(a r^{2}\right) \ldots \ldots\left(a r^{n-1}\right)$
$=(a \times a \times \ldots a)\left(r \times r^{2} \times \ldots . r^{n-1}\right)$
$ = {a^n}{r^{1 + 2 + .....(n - 1)}}$ ........$(2)$
Here, $1,2, \ldots \ldots(n-1)$ is an $A.P.$
$\therefore 1+2+\ldots \ldots \ldots+(n-1)$
$=\frac{n-1}{2}[2+(n-1-1) \times 1]=\frac{n-1}{2}[2+n-2]=\frac{n(n-1)}{2}$
$P=a^{n} r^{\frac{n(n-1)}{2}}$
$\therefore P^{2}=a^{2 n} r^{n(n-1)}$
$=\left[a^{2} r^{(n-1)}\right]^{n}$
$=\left[a \times a r^{n-1}\right]^{n}$
$=(a b)^{n}$ [ Using $(1)$ ]
Thus, the given result is proved.
गुणनफल $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}}$ $\infty$ तक बराबर है
$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ के लिए माना $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}+(\mathrm{c}+\mathrm{a}-2 \mathrm{~b})=0$ का एक मूल $\alpha \neq 1$ है। तो दो कथनों में
($I$) यदि $\alpha \in(-1,0)$ है, तो $a$ तथा $c$ का गुणोत्तर माध्य $b$ नहीं हो सकता।
($II$) यदि $\alpha \in(0,1)$ है, तो $\mathrm{a}$ तथा $\mathrm{c}$ का गुणोत्तर माध्य $\mathrm{b}$ हो सकता है।
उस गुणोत्तर श्रेणी का $12$ वाँ पद ज्ञात कीजिए, जिसका $8$ वाँ पद $192$ तथा सार्व अनुपात $2$ है।
एक गुणोत्तर श्रेणी का प्रथम पद $a=729$ तथा $7$ वाँ पद $64$ है तो $S _{7}$ ज्ञात कीजिए ?
श्रेणी $3 + 4\frac{1}{2} + 6\frac{3}{4} + ......$ के पाँच पदों का योग होगा