If the equation of base of an equilateral triangle is $2x - y = 1$ and the vertex is $(-1, 2)$, then the length of the side of the triangle is
$\sqrt {\frac{{20}}{3}} $
$\frac{2}{{\sqrt {15} }}$
$\sqrt {\frac{8}{{15}}} $
$\sqrt {\frac{{15}}{2}} $
The origin and the points where the line $L_1$ intersect the $x$ -axis and $y$ -axis are vertices of right angled triangle $T$ whose area is $8$. Also the line $L_1$ is perpendicular to line $L_2$ : $4x -y = 3$, then perimeter of triangle $T$ is -
If the middle points of the sides $BC,\, CA$ and $AB$ of the triangle $ABC$ be $(1, 3), \,(5, 7)$ and $(-5, 7)$, then the equation of the side $AB$ is
Locus of the image of point $ (2,3)$ in the line $\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0,k \in R$ is a:
The diagonals of a parallelogram $PQRS$ are along the lines $x + 3y = 4$ and $6x - 2y = 7$. Then $PQRS$ must be a
$P (x, y)$ moves such that the area of the triangle formed by $P, Q (a , 2 a)$ and $R (- a, - 2 a)$ is equal to the area of the triangle formed by $P, S (a, 2 a)\,\,\, \&\,\, \,T (2 a, 3 a)$. The locus of $'P'$ is a straight line given by :