Locus of the image of point $ (2,3)$ in the line $\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0,k \in R$ is a:
circle of radius $\sqrt 3 $
straight line parallel to $x- $ axis
straight line parallel to $y- $ axis
circle of radius $\;\sqrt 2 $
A square of side a lies above the $x$ -axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha ,(0 < \alpha < \frac{\pi }{4})$ with the positive direction of $x$-axis. The equation of its diagonal not passing through the origin is
Equations of diagonals of square formed by lines $x = 0,$ $y = 0,$$x = 1$ and $y = 1$are
The origin and the points where the line $L_1$ intersect the $x$ -axis and $y$ -axis are vertices of right angled triangle $T$ whose area is $8$. Also the line $L_1$ is perpendicular to line $L_2$ : $4x -y = 3$, then perimeter of triangle $T$ is -
The triangle $PQR$ is inscribed in the circle ${x^2} + {y^2} = 25$. If $Q$ and $R$ have co-ordinates $(3,4)$ and $(-4, 3)$ respectively, then $\angle QPR$ is equal to