$P (x, y)$ moves such that the area of the triangle formed by $P, Q (a , 2 a)$ and $R (- a, - 2 a)$ is equal to the area of the triangle formed by $P, S (a, 2 a)\,\,\, \&\,\, \,T (2 a, 3 a)$. The locus of $'P'$ is a straight line given by :

  • A

    $3x - y = a$

  • B

    $(A)$ or $(C)$ both

  • C

    $y = 2ax$

  • D

    $5x - 3y + a = 0$

Similar Questions

A point moves so that square of its distance from the point $(3, -2)$ is numerically equal to its distance from the line $5x - 12y = 13$. The equation of the locus of the point is

An equilateral triangle has each of its sides of length $6\,\, cm$ . If $(x_1, y_1) ; (x_2, y_2) \,\, and \,\, (x_3, y_3)$ are its vertices then the value of the determinant,${{\left| {\,\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}\,} \right|}^2}$ is equal to :

Consider a triangle $\mathrm{ABC}$ having the vertices $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$ and angles $\angle \mathrm{ABC}=\frac{\pi}{6}$ and $\angle \mathrm{BAC}=\frac{2 \pi}{3}$. If the points $\mathrm{B}$ and $\mathrm{C}$ lie on the line $\mathrm{y}=\mathrm{x}+4$, then $\alpha^2+\gamma^2$ is equal to....................

  • [JEE MAIN 2024]

If the extremities of the base of an isosceles triangle are the points $(2a,0)$ and $(0,a)$ and the equation of one of the sides is $x = 2a$, then the area of the triangle is

  • [JEE MAIN 2013]

The area of the triangle bounded by the straight line $ax + by + c = 0,\,\,\,\,(a,b,c \ne 0)$ and the coordinate axes is