यदि एक दीर्घवृत्त की एक नाभि तथा संगत नियता के बीच की दूरी $8$ तथा उत्केन्द्रता $\frac{1}{2}$ हो, तो दीर्घवृत्त के लघुअक्ष की लम्बाई होगी
$3$
$4\sqrt 2 $
$6$
इनमें से कोई नहीं
माना दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ की उत्केन्द्रता $\frac{1}{\sqrt{2}}$ है तथा नाभिलंब जीवा की लम्बाई $\sqrt{14}$ है, तो $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ की उत्केन्द्रता का वर्ग है :
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{16}+\frac {y^2} {9}=1$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(\pm 3,0),$ लघु अक्ष के अंत्य बिंदु $(0,±2)$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
$b=3, c=4,$ केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर
मान लीजिए कि $E$ दीर्घवृत्त (ellipse) $\frac{ x ^2}{16}+\frac{ y ^2}{9}=1$ को दर्शाता है। $E$ पर किसी भी तीन भिन्न बिन्दुओं $P , Q$ और $Q ^{\prime}$ के लिए, मान लीजिए कि $M ( P , Q ), P$ और $Q$ को मिलाने वाले रेखाखण्ड (line segment) का मध्यबिन्दु है, तथा $M \left( P , Q ^{\prime}\right), P$ और $Q ^{\prime}$ को मिलाने वाले रेखाखंड का मध्यबिन्दु है। जब $P , Q$ और $Q ^{\prime}, E$ पर परिवर्तित होते रहेते है, तब $M ( P , Q )$ और $M ( P , Q )$ के बीच की अधिकतम संभावित दूरी. . . . . .है।