If the distance between a focus and corresponding directrix of an ellipse be $8$ and the eccentricity be $1/2$, then length of the minor axis is
$3$
$4\sqrt 2 $
$6$
None of these
Consider the ellipse
$\frac{x^2}{4}+\frac{y^2}{3}=1$
Let $H (\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.
$List-I$ | $List-II$ |
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is | ($P$) $\frac{(\sqrt{3}-1)^4}{8}$ |
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is | ($Q$) $1$ |
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is | ($R$) $\frac{3}{4}$ |
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is | ($S$) $\frac{1}{2 \sqrt{3}}$ |
($T$) $\frac{3 \sqrt{3}}{2}$ |
The correct option is:
Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?
($A$) The area of the quadrilateral $A_1 A _2 A _3 A _4$ is $35$ square units
($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units
($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$
($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$
The acute angle between the pair of tangents drawn to the ellipse $2 x^{2}+3 y^{2}=5$ from the point $(1,3)$ is.
Find the equation for the ellipse that satisfies the given conditions : Vertices $(\pm 5,\,0),$ foci $(\pm 4,\,0)$
The line passing through the extremity $A$ of the major axis and extremity $B$ of the minor axis of the ellipse $x^2+9 y^2=9$ meets its auxiliary circle at the point $M$. Then the area of the triangle with vertices at $A, M$ and the origin $O$ is