यदि शब्द $EXAMINATION$ के सभी अक्षरों से बने विभिन्न क्रमचयों को शब्दकोष की तरह सूचीबद्ध किया जाता है, तो $E$ से प्रारंभ होने वाले प्रथम शब्द से पूर्व कितने शब्द हैं ?
In the given word $EXAMINATION$, there are $11$ letters out of which, $A ,$ $I$ and $N$ appear $2$ times and all the other letters appear only once.
The words that will be listed before the words starting with $E$ in a dictionary will be the words that start with $A $only.
Therefore, to get the number of words starting with $A$, the letter $A$ is fixed at the extreme left position, and then the remaining $10$ letters taken all at a time are rearranged.
since there are $2$ Is and $2$ $Ns$ in the remaining $10$ letters,
Number of words starting with $A=\frac{10 !}{2 ! 2 !}=907200$
Thus, the required numbers of words is $907200 .$
अऋणात्मक पूर्णांको $s$ तथा $r$ के लिये, माना $\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
धनात्मक पूर्णांकों $m$ तथा $n$ के लिये, माना $(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$ जहाँ किसी अॠणात्मक पूर्णांक $p$, के लिये
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$ तब निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे?
$(A)$ सभी धनात्मक पूर्णांको $m$, के लिये $g ( m , n )= g ( n , m )$ होगा।
$(B)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g ( m , n +1)= g ( m +1, n )$ होगा।
$(C)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g (2 m , 2 n )=2 g ( m , n )$ होगा।
$(D)$ सभी धनात्मक पूर्णांकों $m , n$ के लिये $g (2 m , 2 n )=( g ( m , n ))^2$ होगा।
$25$ खिलाड़ियों में से $11$ खिलाड़ियों की एक टीम कितने प्रकार से बनायी जा सकती है, यदि उनमें से $6$ को हमेशा लेना हो तथा $5$ को कभी भी न लेना हो
शब्द ‘$MISSISSIPPI$’ के अक्षरों द्वारा एक या अधिक अक्षरों के कितने अलग अलग समूह बनाये जा सकते हैं
कथन$-1:$ $10$ एक जैसी गैंदों का $4$ विभिन्न बक्सों में बांटने के तरीकों की संख्या ताकि कोई बर्स्सा खाली न हो, ${ }^{9} C_{3}$ है।
कथन$-2:$ $9$ विभिन्न स्थानों में से $3$ स्थान चुने जाने के तरीकों की संख्या ${ }^{9} C_{3}$ है।
$10$ व्यक्ति, जिनमें $A, B$ तथा $C$ सम्मिलित हैं, एक कार्यक्रम में भाषण देने वाले हैं। यदि $A, B$ के पूर्व भाषण देना चाहे तथा $B,C$ के पूर्व भाषण देना चाहे तब कुल कितने प्रकार से यह कार्यक्रम हो सकेगा