જે વકો $\frac{x^{2}}{a}+\frac{y^{2}}{b}$ અને $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ એકબીજને $90^{\circ}$ નાં ખૂણે છેદતા હોય, તો નીચેનામાંથી કયો સંબંધ સત્ય છે ?
$a+b=c+d$
$a-b=c-d$
$a-c=b+d$
$a b=\frac{c+d}{a+b}$
રેખા $x = at^2 $ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ને વાસ્તવિક બિંદઓમાં ક્યારે મળે ?
જો $\frac{x}{a}\,\, + \;\,\frac{y}{b}\,\, = \,\,\sqrt 2 $ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ ને સ્પર્શે, તો તેનો ઉત્કેન્દ્રીકોણ (Eccentric Angle) $\,\theta \,\, = \,\, ............ $ $^o$
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ શિરોબિંદુઓ $(\pm 5,\,0),$ નાભિઓ $(\pm 4,\,0)$
અહી ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$ બિંદુ $\left(\sqrt{\frac{3}{2}}, 1\right)$ માંથી પસાર થાય છે અને ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}} $ આપેલ છે . જો વર્તુળનું કેન્દ્ર એ ઉપવલય $E$ ની નાભી $\mathrm{F}(\alpha, 0), \alpha>0$ હોય અને ત્રિજ્યા $\frac{2}{\sqrt{3}}$ આપેલ છે . વર્તુળએ ઉપવલય $\mathrm{E}$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ માં છેદે છે તો $\mathrm{PQ}^{2}$ ની કિમંત મેળવો.
જો ઉપવલયનો નાભિલંબ તેની ગૌણ અક્ષ કરતાં અડધો હોય, તો તેની ઉન્કેન્દ્રિતા ...