If the coefficients of ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ terms of ${(1 + x)^{14}}$ are in $A.P.$, then $r =$
$6$
$7$
$8$
$9$
The term independent of $x$ in ${\left[ {\sqrt{\frac{ x }{3}} + \frac{{\sqrt 3 }}{{{x^2}}}} \right]^{10}}$ is
If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$
If $p$ and $q$ be positive, then the coefficients of ${x^p}$ and ${x^q}$ in the expansion of ${(1 + x)^{p + q}}$will be
The coefficient of $t^4$ in the expansion of ${\left( {\frac{{1 - {t^6}}}{{1 - t}}} \right)^3}$ is
Coefficient of ${t^{12}}$ in ${\left( {1 + {t^2}} \right)^6}\left( {1 + {t^6}} \right)\left( {1 + {t^{12}}} \right)$ is-