If $p$ and $q$ be positive, then the coefficients of ${x^p}$ and ${x^q}$ in the expansion of ${(1 + x)^{p + q}}$will be

  • [AIEEE 2002]
  • A

    Equal

  • B

    Equal in magnitude but opposite in sign

  • C

    Reciprocal to each other

  • D

    None of these

Similar Questions

Coefficient of ${t^{12}}$  in ${\left( {1 + {t^2}} \right)^6}\left( {1 + {t^6}} \right)\left( {1 + {t^{12}}} \right)$ is-

If the ${(r + 1)^{th}}$ term in the expansion of ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ has the same power of $a$ and $b$, then the value of $r$ is

Find the coefficient of $x^{6} y^{3}$ in the expansion of $(x+2 y)^{9}$

The coefficient of ${x^n}$in expansion of $(1 + x)\,{(1 - x)^n}$ is

  • [AIEEE 2004]

Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$

  • [IIT 2024]