If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$

  • [JEE MAIN 2022]
  • A

    $6006$

  • B

    $6005$

  • C

    $6007$

  • D

    $6008$

Similar Questions

If the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ in the expansion of $(1+a)^{n}$ are in arithmetic progression, prove that $n^{2}-n(4 r+1)+4 r^{2}-2=0$

The sum of the real values of $x$ for which the middle term in the binomial expansion of ${\left( {\frac{{{x^3}}}{3} + \frac{3}{x}} \right)^8}$ equals $5670$ is

  • [JEE MAIN 2019]

Let the coefficients of three consecutive terms $T_r$, $T _{ r +1}$ and $T _{ r +2}$ in the binomial expansion of $( a + b )^{12}$ be in a $G.P.$ and let $p$ be the number of all possible values of $r$. Let $q$ be the sum of all rational terms in the binomial expansion of $(\sqrt[4]{3}+\sqrt[3]{4})^{12}$. Then $p + q$ is equal to :

  • [JEE MAIN 2025]

Find an approximation of $(0.99)^{5}$ using the first three terms of its expansion.

The coefficient of $x^{-5}$ in the binomial expansion of ${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ where $x \ne 0, 1$ , is

  • [JEE MAIN 2017]