यदि ${(1 + x)^n}$ के विस्तार में द्वितीय, तृतीय तथा चतुर्थ पदों के गुणांक समान्तर श्रेणी $(A.P.)$ में हों, तब $n$ बराबर है
$7$
$2$
$6$
इनमें से कोई नहीं
${(1 + \alpha x)^4}$ व ${(1 - \alpha x)^6}$ के प्रसार में मध्य पद के गुणांक समान होंगे यदि $\alpha $ का मान है
$(1+a)^{m+n}$ के प्रसार में सिद्ध कीजिए कि $a^{m}$ तथा $a^{n}$ के गुणांक बराबर हैं |
यदि ${(1 + x)^n}$ के विस्तार में पाँचवें, छठवें तथा सांतवें पदों के गुणांक समान्तर श्रेणी में हों, तो $n =$
दिखाइए कि $(1+x)^{2 n}$ के प्रसार में मध्य पद का गुणांक, $(1+x)^{2 n-1}$ के प्रसार में दोनों मध्य पदों के गुणांकों के योग के बराबर होता है।
${(1 + x)^{10}}$ के विस्तार में मध्य पद का गुणांक होगा