વર્તૂળો ${x^2} + {y^2} + 2ax + cy + a = 0$ અને ${x^2} + {y^2} - 3ax + dy - 1 = 0$ બે ભિન્ન બિંદુઓ $P$ અને $Q$ માં છેદે છે. $a$ ની કેટલી કિંમતો માટે રેખા $5x + by - a = 0$ બિંદુ $P$ અને $Q$ માંથી પસાર થાય..
માત્ર એક
માત્ર બેજ
અનંત
કોઇપણ કિંમત માટે શક્ય નથી
અહી વર્તુળ $c_{1}: x^{2}+y^{2}-2 x-$ $6 y+\alpha=0$ નું રેખા $y=x+1$ ની સાપેક્ષે પ્રતિબિંબ $c_{2}: 5 x^{2}+5 y^{2}+10 g x+10 f y +38=0$ છે. જો $r$ એ વર્તુળ $c _{2}$ ત્રિજ્યા હોય તો $\alpha+6 r^{2}$ ની કિમંત મેળવો.
ત્રિકોણની ત્રણ બાજુઓને વ્યાસ તરીકે લઈ દોરેલા ત્રણ વર્તૂળોનું મૂલાક્ષ કેન્દ્ર (રેડિકલ કેન્દ્ર) . .. .
વિધાન $(A) :$ જો બે વર્તૂળો $ x^2 + y^2 + 2gx + 2fy = 0 $ અને $ x^2 + y^2 + 2gx + 2fy = 0 $ એકબીજાને સ્પર્શેં, તો $f'g = fg'$
કારણ $(R) :$ જો તેમના કેન્દ્રોને જોડતી રેખા બધા જ શક્ય સામાન્ય સ્પર્શકોને લંબ હોય, તો બે વર્તૂળો એકબીજાને સ્પર્શેં.
ધારો કે વર્તૂળો $x^2 + (y - 1)^2 = 9, (x - 1)^2 + y^2 = 25$ છે, કે જેથી
આપલે વર્તુળમાટે ઉપરોક્ત વિધાનમાંથી સત્ય વિધાન મેળવો.
$x^{2}+y^{2}-10 x-10 y+41=0$ ; $x^{2}+y^{2}-22 x-10 y+137=0$