यदि वृत्त $(x+1)^2+(y+2)^2=r^2$ तथा $x^2+y^2-4 x-4 y+4=0$ एक दूसरे को ठीक दो विभिन्न बिंदुओं पर काटते हैं, तो
$5<$ r $<9$
$0<$ r $<7$
$3<$ r $<7$
$\frac{1}{2}<$ r $<7$
यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो
यदि वृत्तों ${x^2} + {y^2} + 2ax + cy + a = 0$ और ${x^2} + {y^2} - 3ax + dy - 1 = 0$ दो भिन्न बिन्दुओं $P$ व $Q$ पर प्रतिच्छेद करते हैं, तब रेखा $5x + by - a = 0$ $P$ व $Q$ से गुजरेगी
वत्तों
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-24 x -10 y +160=0$ के लिए यदि बिन्दु $P_{1}$ एक वत्त पर है तथा बिन्दु $P_{2}$ दूसरे वत्त पर है, तो बिन्दुओं $P_{1}$ तथा $P_{2}$ के बीच की न्यूनतम दूरी है
वृत्तों ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0$ तथा ${x^2} + {y^2} - 12y + 8 = 0$ का मूलाक्ष केन्द्र हैं
उस वृत्त का समीकरण, जो बिन्दु $(2a,\,0)$ से गुजरता है एवं जिसका वृत्त ${x^2} + {y^2} = {a^2}$ के सापेक्ष मूलाक्ष $x = \frac{a}{2}$ है, होगा