If the capacitance of a nanocapacitor is measured in terms of a unit $u$ made by combining the electric charge $e,$ Bohr radius $a_0,$ Planck's constant $h$ and speed of light $c$ then
$u\, = \,\frac{{{e^2}h}}{{{a_0}}}$
$u\, = \,\frac{{hc}}{{{e^2}{a_0}}}$
$u\, = \,\frac{{{e^2}c}}{{h{a_0}}}$
$u\, = \,\frac{{{e^2}{a_0}}}{{hc}}$
Frequency is the function of density $(\rho )$, length $(a)$ and surface tension $(T)$. Then its value is
The equation of state of a real gas is given by $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where $\mathrm{P}, \mathrm{V}$ and $\mathrm{T}$ are pressure. volume and temperature respectively and $R$ is the universal gas constant. The dimensions of $\frac{a}{b^2}$ is similar to that of :
The frequency $(v)$ of an oscillating liquid drop may depend upon radius $(r)$ of the drop, density $(\rho)$ of liquid and the surface tension $(s)$ of the liquid as : $v=r^{ a } \rho^{ b } s ^{ c }$. The values of $a , b$ and $c$ respectively are