The potential energy of a particle varies with distance $x$ from a fixed origin as $U=\frac{A \sqrt{x}}{x^2+B}$, where $A$ and $B$ are dimensional constants then dimensional formula for $A B$ is
A liquid drop placed on a horizontal plane has a near spherical shape (slightly flattened due to gravity). Let $R$ be the radius of its largest horizontal section. A small disturbance causes the drop to vibrate with frequency $v$ about its equilibrium shape. By dimensional analysis, the ratio $\frac{v}{\sqrt{\sigma / \rho R^3}}$ can be (Here, $\sigma$ is surface tension, $\rho$ is density, $g$ is acceleration due to gravity and $k$ is an arbitrary dimensionless constant)
What is Dimensional Analysis ? State uses of Dimensional Analysis.
$M{L^{ - 1}}{T^{ - 2}}$ represents