यदि किसी गुणोत्तर श्रेणी का $p$ वाँ, $q$ वाँ  व $r$ वाँ पद क्रमश: $a,\;b,\;c$ हो, तो  ${a^{q - r}}.\;{b^{r - p}}.\;{c^{p - q}}$ =

  • A

    $0$

  • B

    $1$

  • C

    $abc$

  • D

    $pqr$

Similar Questions

किसी गुणोत्तर श्रेणी का $5$ वाँ, $8$ वाँ तथा $11$ वाँ पद क्रमशः $p, q$ तथा $s$ हैं तो दिखाइए कि $q^{2}=p s$.

यदि गुणोत्तर श्रेणी $\left\{ {{a_n}} \right\}$ में,$\;{a_1} = 3,\;{a_n} = 96$ व ${S_n} = 189$, तब $n$ का मान है

यदि $a,\;b,\;c$ गुणोत्तर श्रेणी के $p$ वें, $q$ वें तथा $r$ वें पद हैं, तब ${\left( {\frac{c}{b}} \right)^p}{\left( {\frac{b}{a}} \right)^r}{\left( {\frac{a}{c}} \right)^q}$ का मान है

यदि त्रिघातीय समीकरण $a{x^3} + b{x^2} + cx + d = 0$ के मूल गुणोत्तर श्रेणी में हैं, तब

यदि ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$,जहाँ $a,b,c$ अशून्य संख्यायें हैं, तब $a,b,c$ होंगे