જો વિધેય $f(x) = x(x + 3) e^{-x/2} $ એ અંતરાલ $[-3, 0]$ માં રોલના પ્રમેયનું પાલન કરે છે તો $C$ મેળવો.
$0$
$1$
$-2$
$-3$
મધ્યકમાન પ્રમેય પરથી , $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, તો . . . .
જો વિધેય $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ માટે મધ્યકમાન પ્રમેયનું પાલન કરે છે તો $C =? $
If $f(x)$ એ $[1,\,2]$ માટે રોલના પ્રમેયનું પાલન કરે છે અને $f(x)$ એ $[1,\,2]$ માં સતત છે તો $\int_1^2 {f'(x)dx} = . . .$
જો વિધેય $f(x) = 2x^3 + ax^2 + bx$ એ અંતરાલ $[-1, 1 ]$ પર બિંદુ $c = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરતું હોય $2a + b$ ની કિમંત મેળવો.
મધ્યકમાન પ્રમેય મુજબ $f(b) - f(a) = $ $(b - a)f'({x_1});$ $a < {x_1} < b$ જો $f(x) = {1 \over x}$, તો ${x_1} = $