If for some positive integer $n,$ the coefficients of three consecutive terms in the binomial expansion of $(1+x)^{n+5}$ are in the ratio $5: 10: 14,$ then the largest coefficient in this expansion is
$792$
$252$
$462$
$330$
Let for the $9^{\text {th }}$ term in the binomial expansion of $(3+6 x)^{n}$, in the increasing powers of $6 x$, to be the greatest for $x=\frac{3}{2}$, the least value of $n$ is $n_{0}$. If $k$ is the ratio of the coefficient of $x ^{6}$ to the coefficient of $x ^{3}$, then $k + n _{0}$ is equal to.
Prove that the coefficient of $x^{n}$ in the expansion of $(1+x)^{2n}$ is twice the coefficient of $x^{n}$ in the expansion of $(1+x)^{2 n-1}$
The coefficient of $x^{37}$ in the expansion of $(1-x)^{30} \, (1 + x + x^2)^{29}$ is :
In the expansion of the following expression $1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ the coefficient of ${x^k}(0 \le k \le n)$ is
If the third term in the binomial expansion of ${(1 + x)^m}$ is $ - \frac{1}{8}{x^2}$, then the rational value of $m$ is