Let for the $9^{\text {th }}$ term in the binomial expansion of $(3+6 x)^{n}$, in the increasing powers of $6 x$, to be the greatest for $x=\frac{3}{2}$, the least value of $n$ is $n_{0}$. If $k$ is the ratio of the coefficient of $x ^{6}$ to the coefficient of $x ^{3}$, then $k + n _{0}$ is equal to.

  • [JEE MAIN 2022]
  • A

    $24$

  • B

    $12$

  • C

    $6$

  • D

    $3$

Similar Questions

The number of integral terms in the expansion of $\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}$ is equal to

  • [JEE MAIN 2023]

Coefficient of $t^{20}$ in the expansion of $(1 + t^2)^{10}(1 + t^{10})(1 + t^{20})$ is

The coefficient of $x^{1012}$ in the expansion of ${\left( {1 + {x^n} + {x^{253}}} \right)^{10}}$ , (where $n \leq 22$ is any positive integer), is

  • [JEE MAIN 2014]

If the coefficient of $x ^{10}$ in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ is $5^{ k } l$, where $l, k \in N$ and $l$ is coprime to $5$ , then $k$ is equal to

  • [JEE MAIN 2022]

If the term independent of $x$ in the expansion of $\left(\sqrt{\mathrm{ax}}{ }^2+\frac{1}{2 \mathrm{x}^3}\right)^{10}$ is 105 , then $\mathrm{a}^2$ is equal to :

  • [JEE MAIN 2024]