The coefficient of $x^{37}$ in the expansion of $(1-x)^{30} \, (1 + x + x^2)^{29}$ is :

  • A

    $0$

  • B

    ${}^{29}{C_{12}}$

  • C

    $ - {}^{29}{C_{12}}$

  • D

    None

Similar Questions

If the $6^{th}$ term in the expansion of the binomial ${\left[ {\sqrt {{2^{\log (10 - {3^x})}}} + \sqrt[5]{{{2^{(x - 2)\log 3}}}}} \right]^m}$ is equal to $21$ and it is known that the binomial coefficients of the $2^{nd}$, $3^{rd}$ and $4^{th}$ terms in the expansion represent respectively the first, third and fifth terms of an $A.P$. (the symbol log stands for logarithm to the base $10$), then $x = $

The coefficient of $x^{10}$ in the expansion of $(1 + x)^2 (1 + x^2)^3 ( 1 + x^3)^4$ is euqal to

  • [JEE MAIN 2018]

The coefficient of $x^{18}$ in the product $(1+ x)(1- x)^{10} (1+ x + x^2 )^9$ is 

  • [JEE MAIN 2019]

Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$

  • [IIT 2024]

If ${x^m}$occurs in the expansion of ${\left( {x + \frac{1}{{{x^2}}}} \right)^{2n}},$ then the coefficient of ${x^m}$ is