यदि किसी $\mathrm{m}, \mathrm{n}$ के लिए ; $ { }^6 C_m+2\left({ }^6 C_{m+1}\right)+{ }^6 C_{m+2}>{ }^8 C_3 $ तथा $ { }^{n-1} P_3:{ }^n P_4=1: 8 \text {, है, तो }{ }^n P_{m+1}+{ }^{n+1} C_m$ बराबर है
$380$
$376$
$384$
$372$
यदि ${ }^{n} C _{8}={ }^{n} C _{2},$ तो ${ }^{n} C _{2}$ ज्ञात कीजिए।
$5$ लड़कियों और $3$ लड़कों को एक पंक्ति में कितने प्रकार से बैठा सकते हैं, जब कि कोई भी दो लड़के एक साथ नहीं बैठते हैं ?
यदि $^n{C_3} + {\,^n}{C_4} > {\,^{n + 1}}{C_3},$ तब
शतरंज प्रतियोगिता में भाग लेने वाले $m$ पुरूष तथा दो महिलायें हैं। प्रत्येक प्रतिभागी हर दूसरे प्रतिभागी के साथ दो खेल खेलता है। यदि पुरूषों द्वारा अपने मध्य खेले गये खेलों की संख्या पुरूषों और महिलाओं के मध्य खेले जाने वाले खेलों की संख्या $84$ से अधिक हो, तो $m$ का मान होगा
यदि $^{10}{C_r}{ = ^{10}}{C_{r + 2}}$, तो $^5{C_r}$ का मान होगा