If for complex numbers ${z_1}$ and ${z_2}$, $arg({z_1}/{z_2}) = 0,$ then $|{z_1} - {z_2}|$ is equal to

  • A

    $|{z_1}| + |{z_2}|$

  • B

    $|{z_1}| - |{z_2}|$

  • C

    $||{z_1}| - |{z_2}||$

  • D

    $0$

Similar Questions

If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if

For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is

If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then

If $(3 + i)z = (3 - i)\bar z,$then complex number $z$ is

A real value of $x$ will satisfy the equation $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,{\rm{real),}}$ if