If for complex numbers ${z_1}$ and ${z_2}$, $arg({z_1}/{z_2}) = 0,$ then $|{z_1} - {z_2}|$ is equal to
$|{z_1}| + |{z_2}|$
$|{z_1}| - |{z_2}|$
$||{z_1}| - |{z_2}||$
$0$
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then
If $(3 + i)z = (3 - i)\bar z,$then complex number $z$ is
A real value of $x$ will satisfy the equation $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,{\rm{real),}}$ if