જો ચલ $\theta$ માં સમીકરણ $3 tan(\theta -\alpha) = tan(\theta + \alpha)$, (જ્યાં $\alpha$ એ અચળ છે) ને વાસ્તવિક ઉકેલ ન હોય તો $\alpha$ ની કિમત મેળવો. (અહી $tan(\theta - \alpha)$ & $tan(\theta + \alpha)$ બંને વ્યાખીયાયિત છે)
$\frac{\pi}{15}$
$\frac{5\pi}{18}$
$\frac{5\pi}{12}$
$\frac{17\pi}{18}$
જો $\sin 2x + \sin 4x = 2\sin 3x,$ તો $x =$
જો $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ અને $x$ એ સમીકરણો $y = 2\left[ x \right] + 2$ અને $y = 3\left[ {x - 2} \right]$નો ઉકેલ છે, જ્યાં $\left[ x \right]$ એ $x$ નો પૂર્ણાક ભાગ દર્શાવે છે તો $a$ =
જો $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ એ મહતમ હોય તો $A$ ની કિમત મેળવો.
જો$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, કે જ્યાં $0 < \theta < {180^o}$, તો $\theta =$