If a vector $2\hat i + 3\hat j + 8\hat k$ is perpendicular to the vector $4\hat j - 4\hat i + \alpha \hat k$. Then the value of $\alpha $ is

  • [AIPMT 2005]
  • A

    $-1$

  • B

    $0.5$

  • C

    $-0.5$

  • D

    $1$

Similar Questions

The vectors from origin to the points $A$ and $B$ are $\overrightarrow A = 3\hat i - 6\hat j + 2\hat k$ and $\overrightarrow B = 2\hat i + \hat j - 2\hat k$ respectively. The area of the triangle $OAB$ be

For what value of $x$, will the two vectors $A =2 \hat{ i }+2 \hat{ j }-x \hat{ k }$ and $B =2 \hat{ i }-\hat{ j }-3 \hat{ k }$ are perpendicular to each other?

The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is

The components of $\vec a = 2\hat i + 3\hat j$ along the direction of vector $\left( {\hat i + \hat j} \right)$ is

If $\vec A$ and $\vec B$ are perpendicular vectors and vector $\vec A = 5\hat i + 7\hat j - 3\hat k$ and $\vec B = 2\hat i + 2\hat j - a\hat k.$ The value of $a$ is