For what value of $x$, will the two vectors $A =2 \hat{ i }+2 \hat{ j }-x \hat{ k }$ and $B =2 \hat{ i }-\hat{ j }-3 \hat{ k }$ are perpendicular to each other?

  • A
    $x=-2 / 3$
  • B
    $x=3 / 2$
  • C
    $x=-4 / 3$
  • D
    $x=2 / 3$

Similar Questions

Projection of vector $\vec A$ on $\vec B$ is

The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is

  • [AIPMT 2005]

Let $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{B}=4 \hat{i}+j+2 \hat{k}$ then $|\vec{A} \times \vec{B}|$ is equal to ...................

State and explain the characteristics of vector product of two vectors. 

A vector has magnitude same as that of $\overrightarrow{\mathrm{A}}-=3 \hat{\mathrm{j}}+4 \hat{\mathrm{j}}$ and is parallel to $\overrightarrow{\mathrm{B}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$. The $\mathrm{x}$ and $y$ components of this vector in first quadrant are $\mathrm{x}$ and $3$ respectively where  $X$=_____.

  • [JEE MAIN 2024]