यदि एक रेखा मूल बिन्दु से गुजरे तथा वृत्त ${(x - 4)^2} + {(y + 5)^2} = 25$ को स्पर्श करे तो उसकी प्रवणता होनी चाहिये

  • A

    $ \pm \frac{3}{4}$

  • B

    $0$

  • C

    $ \pm \,3$

  • D

    $ \pm \,1$

Similar Questions

उस वृत्त जिसका केन्द्र सरल रेखाओं $x-y=1$ तथा $2 x+y=3$ का प्रतिच्छेद बिंदु है, के बिंदु $(1,-1)$ पर खींची गई स्पर्श रेखा का समीकरण है

  • [JEE MAIN 2016]

माना कि $S$ एक वृत्त (circle) है जो $x y$-समतल (plane) में समीकरण (equation) $x^2+y^2=4$ के द्वारा परिभाषित है।

($1$) माना कि $E_1 E_2$ और $F_1 F_2$ वृत्त $S$ की ऐसी जीवायें (chords) हैं जो बिंदु $P_0(1,1)$ से गुजरती हैं और क्रमश: $x$-अक्ष (axis) व $y$-अक्ष के समान्तर (parallel) हैं। माना कि $G_1 G_2, S$ की वह जीवा है जो $P_0$ से गुजरती है और जिसकी प्रवणता (slope) -$1$ है। माना कि $E_1$ और $E_2$ पर $S$ की स्पर्शियाँ (tangents) $E_3$ पर मिलती हैं, $F_1$ और $F_2$ पर $S$ की स्पर्शियाँ $F_3$ पर मिलती हैं, तथा $G_1$ और $G_2$ पर $S$ की स्पर्शियाँ $G_3$ पर मिलती हैं। तब वह वक्र (curve) जिस पर बिंदु $E_3, F_3$ और $G_3$ स्थित हैं, है

$(A)$ $x+y=4$ $(B)$ $(x-4)^2+(y-4)^2=16$ $(C)$ $(x-4)(y-4)=4$ $(D)$ $x y=4$

($2$) माना कि $P$ वृत्त $S$ पर स्थित एक ऐसा बिंदु है जिसके दोनों निर्देशांक (coordinates) धनात्मक (positive) हैं। माना कि वृत्त $S$ के बिंदु $P$ पर स्पर्शी (tangent) निर्देशांक अक्षों (coordinate axes) को बिन्दुओं $M$ और $N$ पर प्रतिच्छेद (intersects) करती है। तब वह वक्र (curve) जिस पर रेखाखंड (line segement) $M N$ का मध्य बिंदु (mid-point) अनिवार्य रूप से स्थित है, है

$(A)$ $(x+y)^2=3 x y$ $(B)$ $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$ $(C)$ $x^2+y^2=2 x y$ $(D)$ $x^2+y^2=x^2 y^2$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

रेखा $y = 2x + c$ को वृत्त ${x^2} + {y^2} = 16$ की स्पर्श रेखा होने के लिए $c$ का मान है

माना कि रेखाऐं $y +2 x =\sqrt{11}+7 \sqrt{7}$ तथा $2 y + x =2$ lsqrt $\{11\}+6$ lsqrt 7 वृत $C :( x - h )^2+( y - k )^2= r ^2$ का अभिलम्ब है। यदि रेखा $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$, वृत $C$ पर स्पर्श रेखा है, तब $(5 h -8 k )^2+5 r ^2$ का मान बराबर है $.............$

  • [JEE MAIN 2022]

रेखा $x\cos \alpha  + y\sin \alpha  = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha  - 2ay\sin \alpha  = 0$ की स्पर्श रेखा होगी, यदि $p = $