वृत्त ${x^2} + {y^2} = 5$ के बिन्दु $(1, -2)$ पर स्पर्श रेखा का वृत्त ${x^2} + {y^2} - 8x + 6y + 20 = 0$ पर स्पर्श बिन्दु है
$(2, -1)$
$(3, -1)$
$(4, -1)$
$(5, -1)$
रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है
यदि रेखा $4x + 3y + \lambda = 0$ वृत्त $2({x^2} + {y^2}) = 5$ को स्पर्श करे तो $\lambda $ का मान होगा
यदि वक्र $x^{2}=y-6$ के बिंदु $(1,7)$ पर बनी स्पशरिखा वृत्त $x^{2}+y^{2}+16 x+12 y+c=0$ को स्पर्शे करती है, तो $c$ का मान है
बिन्दु $\mathrm{P}(-3,2), \mathrm{Q}(9,10)$ तथा $\mathrm{R}(\alpha, 4)$ एक वृत्त $\mathrm{C}$ पर हैं, जिसका व्यास $P R$ ह। बिन्दुओं $Q$ तथा $R$ पर वृत्त $\mathrm{C}$ की स्पर्श रेखाएँ बिन्दु $\mathrm{S}$ पर मिलती है। यदि बिन्दु $\mathrm{S}$ रेखा $2 \mathrm{x}-\mathrm{ky}=1$ पर है, तो $\mathrm{k}$ बराबर है___________.
दिये गये वृत्त ${x^2} + {y^2} - 4x - 5 = 0$ व ${x^2} + {y^2} + 6x - 2y + 6 = 0$ हैं। माना बिन्दु $P$ $(\alpha ,\beta )$ इस प्रकार है कि इस बिन्दु से दोनों वृत्तों पर खींची गयी स्पर्श रेखायें बराबर हों, तो