If a circle, whose centre is $(-1, 1)$ touches the straight line $x + 2y + 12 = 0$, then the coordinates of the point of contact are
$\left( {\frac{{ - 7}}{2}, - 4} \right)$
$\left( {\frac{{ - 18}}{5},\frac{{ - 21}}{5}} \right)$
$(2,-7)$
$(-2, -5)$
Given the circles ${x^2} + {y^2} - 4x - 5 = 0$and ${x^2} + {y^2} + 6x - 2y + 6 = 0$. Let $P$ be a point $(\alpha ,\beta )$such that the tangents from P to both the circles are equal, then
The line $lx + my + n = 0$ is normal to the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$, if
Let $B$ be the centre of the circle $x^{2}+y^{2}-2 x+4 y+1=0$ Let the tangents at two points $\mathrm{P}$ and $\mathrm{Q}$ on the circle intersect at the point $\mathrm{A}(3,1)$. Then $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ is equal to .... .
The number of tangents which can be drawn from the point $(-1,2)$ to the circle ${x^2} + {y^2} + 2x - 4y + 4 = 0$ is
Tangents drawn from origin to the circle ${x^2} + {y^2} - 2ax - 2by + {b^2} = 0$ are perpendicular to each other, if