यदि बिन्दु $(1,2)$ से वृत्तों ${x^2} + {y^2} + x + y - 4 = 0$ तथा $3{x^2} + 3{y^2} - x - y + k = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयों का अनुपात $4 : 3$ हो, तो $k =$

  • A

    $7/2$

  • B

    $21/2$

  • C

    $-21/ 4$

  • D

    $7/4$

Similar Questions

यदि रेखा $4x + 3y + \lambda  = 0$ वृत्त $2({x^2} + {y^2}) = 5$ को स्पर्श करे तो $\lambda $ का मान होगा

रेखा $x\cos \alpha  + y\sin \alpha  = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha  - 2ay\sin \alpha  = 0$ की स्पर्श रेखा होगी, यदि $p = $

वृत्त $(\mathrm{x}-\alpha)^2+(\mathrm{y}-\beta)^2=50$, जहाँ $\alpha, \beta>0$ है, का विचार कीजिए। यदि यह वृत्त रेखा $\mathrm{y}+\mathrm{x}=0$ की बिंदु $P$ की मूल बिंदु से दूरी $4 \sqrt{2}$ है, तो $(\alpha+\beta)^2$ बराबर है................।

  • [JEE MAIN 2024]

यदि वृत्त जिसका केन्द्र $(-1, 1)$ है, सरल रेखा $x + 2y + 12 = 0$ को स्पर्श करता है, तब स्पर्श-बिन्दु के निर्देशांक हैं

बिन्दु $(1, 1)$ पर वृत्त $2{x^2} + 2{y^2} - 2x - 5y + 3 = 0$ के अभिलम्ब का समीकरण है